Genetically and functionally defined NTS to PBN brain circuits mediating anorexia
نویسندگان
چکیده
The central nervous system controls food consumption to maintain metabolic homoeostasis. In response to a meal, visceral signals from the gut activate neurons in the nucleus of the solitary tract (NTS) via the vagus nerve. These NTS neurons then excite brain regions known to mediate feeding behaviour, such as the lateral parabrachial nucleus (PBN). We previously described a neural circuit for appetite suppression involving calcitonin gene-related protein (CGRP)-expressing PBN (CGRP(PBN)) neurons; however, the molecular identity of the inputs to these neurons was not established. Here we identify cholecystokinin (CCK) and noradrenergic, dopamine β-hydroxylase (DBH)-expressing NTS neurons as two separate populations that directly excite CGRP(PBN) neurons. When these NTS neurons are activated using optogenetic or chemogenetic methods, food intake decreases and with chronic stimulation mice lose body weight. Our optogenetic results reveal that CCK and DBH neurons in the NTS directly engage CGRP(PBN) neurons to promote anorexia.
منابع مشابه
Spontaneous Changes in Taste Sensitivity of Single Units Recorded over Consecutive Days in the Brainstem of the Awake Rat
A neuron's sensitivity profile is fundamental to functional classification of cell types, and underlies theories of sensory coding. Here we show that gustatory neurons in the nucleus of the solitary tract (NTS) and parabrachial nucleus of the pons (PbN) of awake rats spontaneously change their tuning properties across days. Rats were surgically implanted with a chronic microwire assembly into t...
متن کاملTaste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract.
In the rodent, the parabrachial nucleus of the pons (PbN) receives information about taste directly from the nucleus of the solitary tract (NTS). Here we examined how information about taste quality (sweet, sour, salty, and bitter) is conveyed in the PbN of awake, freely licking rats, with a focus on how this information is transformed from the incoming NTS signals. Awake rats with electrodes i...
متن کاملModulation of carotid sinus afferent input to nucleus tractus solitarius by parabrachial nucleus stimulation.
There is increasing evidence that the parabrachial nucleus (PBN) may be integrally involved in cardiovascular reflex regulation. In cats in which anesthesia was induced with pentobarbital and maintained with alpha-chloralose, we studied the effects of PBN stimulation on cardiovascular afferent inputs to nucleus tractus solitarius (NTS), the site of first central termination for cardiovascular a...
متن کاملBrain nuclear receptors and body weight regulation
Introduction Obesity is a serious global health problem due to its increasing prevalence and comorbidities. Over 30% of Americans are obese (1). Obese individuals are at an increased risk for developing type 2 diabetes, cardiovascular disease, and cancer. These observations highlight the urgent need to better understand the physiology of body weight control, which may facilitate the development...
متن کاملOpioid antagonist diprenorphine microinjected into parabrachial nucleus selectively inhibits vasopressin response to hypovolemic stimuli in the rat.
Subcutaneous injection of the potent, nonselective opioid antagonist diprenorphine inhibits the vasopressin response to acute hypovolemia. To determine if this inhibition is due to antagonism of opioid receptors in brain pathways that mediate volume control, we determined the vasopressin response to different stimuli when diprenorphine or other opiates were injected into the cerebral ventricles...
متن کامل